e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

BRI L, 5K 19
TERKF ITENLFbr
2022F09~12H

Adapted from Graham’s Lecture slides

F105: REAZEFINIT

Interactive Programming

Batch Programs

** To date, we have seen how Haskell can be used to write
batch programs that take all their inputs at the start and give
all their outputs at the end.

— o —

Inputs Outputs

Interactive Programs

*» However, we would also like to use Haskell to write
Interactive programs that read from the keyboard and write
to the screen, as they are running.

l Keyboard

A Interactive Program q

Outputs

Inputs

Interactive Programs in Haskell: Difficulties

o* Haskell programs are pure mathematical functions:

Haskell programs have no side effects.

*» However, reading from the keyboard and writing to the
screen are side effects:

Interactive programs have side effects

A solution that looks perfect

An Interactive program can be viewed as:

X a pure function that
- takes the current state of the world as its argument, and
- produces a modified world as Its result.

type 10 = World" —> World

** To represent a returning result in addition to performing side
effects, we generalize the type to:

type 10 a = World => (a, World)

A solution that looks perfect

** So, interactive programs are written in Haskell by using
types to distinguish pure expressions from impure actions
that may involve side effects.

The type of actions that return a value of type a.

o For example: I0 ()

Some |10 Actions exported by Prelude

* The action getChar (1) reads a character from the keyboard,
(2) echoes it to the screen, and (3) returns the character as
its result value.

getChar ::

* The action putChar ¢ (1) writes the character c to the screen,
and (2) returns no result value:

putChar :: —> ()

**» The action return v simply returns the value v, without
performing any interaction :

return ::

do a sequence of actions

% A sequence of actions can be combined as a single
composite action using the keyword do.
% For example:

(:)

X <— getChar

getChar
y <— getChar
return (x,y)

Some |10 Actions exported by Prelude

Reading a string from the keyboard

getLine ::
getLine = do x <— getChar
1T X == "\n' then
return
else
do xs <- getLine
return (x:xs)

Some |10 Actions exported by Prelude

Writing a string to the screen

putStr :: —> ()

putStr return

putStr (x:xs) = do putChar x
putStr Xxs

Writing a string to the screen and move to a new line

putStrLn :: —> ()
putStrLn xs = do putStr Xxs
putChar "\n°

A Simple Example

* We can now define an action that prompts for a string to be
entered and displays its length:

()
putStr

XS <— getlLine

putStr
putStr (show (length xs))
putStrbLn

ghci> strlen
Enter a string: Haskell
The string has 7 characters

M FA1: Hangman jJFX%

*I‘The Rules ghc1i> hangman

Think of a word:
> One player secretly types in a word.

> The other player tries to deduce the word, by Irgazza%”ess t

entering a sequence of guess. —as——11
> For each guess, the computer indicates which

n - __S____
letters In the secret word occur In the guess. [EEINSSSeE]

> The game ends when the guess is correct. has-ell
? haskell

You got 1t!

M FA1: Hangman jJFXx

** We adopt a top down approach to implementing hangman in
Haskell, starting as follows:

hangman :: ()
hangman = do putStrLn "Think of a word: "

word <— sgetlLine
putStrLn "Try to guess 1t:"
play word

M FA1: Hangman jJFXx

¢ The action sgetLine reads a line of text from the keyboard,
echoing each character as a dash:

sgetLine :.:
sgetLine = do
X <— getCh
1f x == "\n' then
do putChar X
return
else
do putChar '-'
XS <— sgetlLine
return (x:xs)

M FA1: Hangman jJFXx

¢ The action getCh reads a single character from the keyboard,
without echoing it to the screen:

System.I0 (hSetEcho, stdin)

getCh ::

getCh = do hSetEcho stdin False
X <— getChar
hSetEcho stdin True
return X

M FA1: Hangman jJFXx

* The function play is the main loop, which requests and

processes guesses until the game enads.

play :: —> ()

play word = do match :: —> —>
putStr "7 U match xs ys =
guess <— getLine [if elem x ys then x else '-' | x <— xs]
1T guess == word then

ghci> match "haskell" "pascal”

putStrln "You got 1t!" FEESaiioa

else
do putStrLn (match word guess)
play word

WA2: Nim HE%

¢* The Rules
> The board comprises five rows of stars:

> Two players take it turn about to remove one or
more stars from the end of a single row.

> The winner Is the player who removes the last star
or stars from the board.

Boardl IR~ E R

initial ::
initial = [5,4,3,2,1]

finished ::
finished = all (

putBoard Board —> I0 ()
putBoard [a,b,c,d,e] = do

putRow 1 a

putRow 2 D

putRow 3 C

putRow 4 d butRow :: Int —> Int —> 10 ()
PUtROW 5 € pytRow row num = do

putStr $ show row
putStr ": "
putStrLn $ concat $ replicate num "x "

B R — 5/ — R METHRETF 25

Hl¥r— IR ER S &)
valid :: —> —> —>
valid board row del = board !! (row -1) >= del

(11) :: [a] —> Int —> a
List index (subscript) operator, starting from 0
(exported by Prelude)

1T — R RE

move :: —> —> —>
move board row del = [update r n | (r,n) <- zip [1..] board]
update r n r == row n — del N

play :: Board —> Int —> I0 ()
play board player =
do newline

putBoard board nim . IO ()
newtine nim = play initial 1

1f finished board then

do putStr "Player "
putStr $ show $ next player
putStrLn " wins!!"

else
do putStr "Player "
putStrLn $ show player
row <— getDigit "Enter a row number: "
del <- getDigit "Stars to remove: "
1f valid board row del then
play (move board row del) (next player)
else
do newline
putStrLn "ERROR: Invalid move"
play board player

10-1
Define an action adder :: |O () that reads a given number of
integers from the keyboard, one per line, and displays their sum.

For example: ghci> adder
How many numbers? 5

1

he total 1s 25

10-2
Download the source codes of the two games (hangman and
nim) from the following website:

hitp://www.cs.nott.ac.uk/~pszgmh/pih.htm]

read the codes carefully, and run them using ghci.

http://www.cs.nott.ac.uk/~pszgmh/pih.html

Adapted from Graham’s Lecture slides

F105: REAZEFINIT

Interactive Programming

L2 X 2 E

