
计算概论A—实验班

函数式程序设计
Functional Programming

胡振江，张 伟

北京⼤学 计算机学院
2022年09～12⽉

第10章：交互式程序设计
Interactive Programming

Adapted from Graham’s Lecture slides

Batch Programs

A Batch Program

✤To date, we have seen how Haskell can be used to write
batch programs that take all their inputs at the start and give
all their outputs at the end.

Inputs Outputs

Interactive Programs

A Interactive Program

✤However, we would also like to use Haskell to write
interactive programs that read from the keyboard and write
to the screen, as they are running.

Inputs Outputs

Keyboard

Screen

Interactive Programs in Haskell: Difficulties
✤Haskell programs are pure mathematical functions:

✤However, reading from the keyboard and writing to the
screen are side effects:

Haskell programs have no side effects.

Interactive programs have side effects

A solution that looks perfect

An interactive program can be viewed as:

✴a pure function that

- takes the current state of the world as its argument, and

- produces a modified world as its result.

type IO = World -> World

✤To represent a returning result in addition to performing side
effects, we generalize the type to:

type IO a = World -> (a, World)

A solution that looks perfect
✤So, interactive programs are written in Haskell by using

types to distinguish pure expressions from impure actions
that may involve side effects.

IO a
The type of actions that return a value of type a.

✤For example: IO char IO ()

Some IO Actions exported by Prelude
✤The action getChar (1) reads a character from the keyboard,

(2) echoes it to the screen, and (3) returns the character as
its result value.

 getChar :: IO Char

✤The action putChar c (1) writes the character c to the screen,
and (2) returns no result value:

 putChar :: Char -> IO ()

✤The action return v simply returns the value v, without
performing any interaction :

 return :: a -> IO a

do a sequence of actions
✤A sequence of actions can be combined as a single

composite action using the keyword do.
✤For example:

 act :: IO (Char,Char)
 act = do x <- getChar
 getChar
 y <- getChar
 return (x,y)

Reading a string from the keyboard
 getLine :: IO String
 getLine = do x <- getChar
 if x == '\n' then
 return []
 else
 do xs <- getLine
 return (x:xs)

Some IO Actions exported by Prelude

Writing a string to the screen
 putStr :: String -> IO ()
 putStr [] = return ()
 putStr (x:xs) = do putChar x
 putStr xs

Some IO Actions exported by Prelude

Writing a string to the screen and move to a new line

 putStrLn :: String -> IO ()
 putStrLn xs = do putStr xs
 putChar '\n'

A Simple Example

 strlen :: IO ()
 strlen = do putStr "Enter a string: "
 xs <- getLine
 putStr "The string has "
 putStr (show (length xs))
 putStrLn " characters"

✤We can now define an action that prompts for a string to be
entered and displays its length:

 ghci> strlen
 Enter a string: Haskell
 The string has 7 characters

应⽤1：Hangman 游戏

✤The Rules
‣ One player secretly types in a word.
‣ The other player tries to deduce the word, by

entering a sequence of guess.
‣ For each guess, the computer indicates which

letters in the secret word occur in the guess.
‣ The game ends when the guess is correct.

 ghci> hangman
 Think of a word:

 Try to guess it:
 ? pascal
 -as--ll
 ? rust
 --s----
 ? haspell
 has-ell
 ? haskell
 You got it!

应⽤1：Hangman 游戏
✤We adopt a top down approach to implementing hangman in

Haskell, starting as follows:

 hangman :: IO ()
 hangman = do putStrLn "Think of a word: "
 -- get a string secretly
 word <- sgetLine
 putStrLn "Try to guess it:"
 play word -- play the game

应⽤1：Hangman 游戏
✤The action sgetLine reads a line of text from the keyboard,

echoing each character as a dash:
 sgetLine :: IO String
 sgetLine = do
 x <- getCh -- get a char without echoing
 if x == '\n' then
 do putChar x
 return []
 else
 do putChar '-'
 xs <- sgetLine
 return (x:xs)

应⽤1：Hangman 游戏
✤The action getCh reads a single character from the keyboard,

without echoing it to the screen:

 import System.IO (hSetEcho, stdin)
 ...
 getCh :: IO Char
 getCh = do hSetEcho stdin False
 x <- getChar
 hSetEcho stdin True
 return x

应⽤1：Hangman 游戏
✤The function play is the main loop, which requests and

processes guesses until the game ends.
 play :: String -> IO ()
 play word = do
 putStr "? "
 guess <- getLine
 if guess == word then
 putStrLn "You got it!"
 else
 do putStrLn (match word guess)
 play word

 match :: String -> String -> String
 match xs ys =
 [if elem x ys then x else '-' | x <- xs]

 ghci> match "haskell" "pascal"
 "-as--ll"

应⽤2：Nim 游戏
✤The Rules
‣ The board comprises five rows of stars:

‣ Two players take it turn about to remove one or
more stars from the end of a single row.

‣ The winner is the player who removes the last star
or stars from the board.

 1: * * * * *
 2: * * * *
 3: * * *
 4: * *
 5: *

Board的表示和显示

 type Board = [Int]

 initial :: Board
 initial = [5,4,3,2,1]

 finished :: Board -> Bool
 finished = all (== 0)

Board的表示和显示

 putBoard :: Board -> IO ()
 putBoard [a,b,c,d,e] = do
 putRow 1 a
 putRow 2 b
 putRow 3 c
 putRow 4 d
 putRow 5 e

 putRow :: Int -> Int -> IO ()
 putRow row num = do
 putStr $ show row
 putStr ": "
 putStrLn $ concat $ replicate num "* "

 ghci> putBoard initial
 1: * * * * *
 2: * * * *
 3: * * *
 4: * *
 5: *

游戏中的⼀步/⼀次操作：从某⾏删除若⼲个星号

判断⼀次操作是否合法

 valid :: Board -> Int -> Int -> Bool
 valid board row del = board !! (row -1) >= del

(!!) :: [a] -> Int -> a
List index (subscript) operator, starting from 0

(exported by Prelude)

进⾏⼀次操作

 move :: Board -> Int -> Int -> Board
 move board row del = [update r n | (r,n) <- zip [1..] board]
 where update r n = if r == row then n - del else n

 play :: Board -> Int -> IO ()
 play board player =
 do newline
 putBoard board
 newline
 if finished board then
 do putStr "Player "
 putStr $ show $ next player
 putStrLn " wins!!"
 else
 do putStr "Player "
 putStrLn $ show player
 row <- getDigit "Enter a row number: "
 del <- getDigit "Stars to remove: "
 if valid board row del then
 play (move board row del) (next player)
 else
 do newline
 putStrLn "ERROR: Invalid move"
 play board player

 nim :: IO ()
 nim = play initial 1

作业

10-1
Define an action adder :: IO () that reads a given number of
integers from the keyboard, one per line, and displays their sum.

For example: ghci> adder
 How many numbers? 5
 1
 3
 5
 7
 9
 The total is 25

10-2
Download the source codes of the two games (hangman and
nim) from the following website:

http://www.cs.nott.ac.uk/~pszgmh/pih.html

read the codes carefully, and run them using ghci.

http://www.cs.nott.ac.uk/~pszgmh/pih.html

第10章：交互式程序设计
Interactive Programming

Adapted from Graham’s Lecture slides

就到这⾥吧

